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If a minimum function is computed from overlap on a single-weight peak in the Patterson function, 
the resultant map will, ideally, show a single image of the structure. However it is difficult to locate 
single-weight peaks in practice and overlap on a multiple peak produces several heavily-overlapped 
parallel images of the structure. 

The procedure described in this paper is as follows: (i) A minimum function is constructed from a 
multiple peak. (ii) The Fourier coefficients of the minimum function are found and, from these and 
the observed intensities, a map is computed which shows by what vectors the several images in the 
maximum function are displaced. (iii) The minimum function is displaced by the vectors found in (ii) 
and the minimum function of the result gives an approximation to the structure. 

An application to a model structure is described and possible developments of the method are 
indicated. 

Introduction 

It has long been known that from an ideal, completely 
resolved Patterson function it would be possible to 
reconstruct the original structure (for detailed biblio- 
graphy see Buerger, 1959). As an alternative to deter- 
min ing  atomic coordinates one could use such a Pat- 
terson function to compute the phases of the structure 
factors (Hauptman  & Karle, 1962) and so solve the 
structure in this way. 

A procedure which is often successful is the applica- 
tion of the minimum-funct ion  method, particularly if  
the structure contains a fairly heavy atom or if sym- 
metry allows a multiple-overlap function to be exam- 
ined. However, when the atoms are more or less equal 
and symmetry gives no assistance, the usefulness of 
the method is very much reduced. Theoretically, for a 
centrosymmetric structure, if the min imum function is 
to show just a single image of the structure then the 
superposition vector should have single weight; that 
is to say it should be a resolved inversion peak. For a 
non-centrosymmetric  structure superposition on a re- 
solved single-weight peak yields the structure plus an 
image inverted through a centre of symmetry. The 
practical difficulties are that single weight peaks are 
not easy to find - they are concealed by chance over- 
lap and also by fluctuations due to errors in the ob- 
served data - and that, in any case, the min imum 
function will contain a large number  of other peaks 
which will confuse the resultant map. 

If  the overlap is carried out on a multiple peak, say 
of multiplicity n, then for a centrosymmetric structure 
there will be n parallel images while for a non-centro- 
symmetric structure there will be n parallel images with 

n parallel images inverted through a centre of sym- 
metry. This may be seen readily for a non-centrosym- 
metric structure in Fig. 1, which shows a non-centro- 
symmetric structure, its Patterson function, and the 
results of overlapping on a single and on a threefold 
peak. 

The method described here will show how to derive 
information from a multiple-peak overlap. This idea 
was first put forward by one of us (M.M.W.)  in 1964" 
and a similar idea has independently been given by 
Simonov (1965). However the technique used by us 
differs in many ways from that suggested by Simonov 
and our method will now be described. 

Preliminary ideas 

The essence of the method proposed here is that one 
deliberately chooses a multiple peak for the overlap. 
The type of peak sought is one that is reasonably sharp 
and preferably of not too great a magnitude, say three 
to five times that of a single-weight peak. 

The result of  such an overlap is shown in Fig. l(d) 
which is the result of  overlapping on a threefold peak 
for a non-centrosymmetric structure. The three parallel 
images are shown in outline; three parallel images cen- 
trosymmetrically related to those outlined may also be 
discerned. If  the vector displacements of the three 
parallel images were known and if  a min imum function 
was formed with three of the figures l(d) displaced by 
these vectors then, ideally, a single image of the struc- 
ture should result. 

* Meeting on Structure analysis in physics and chemistry, 
Sheffield, March, 1964. 
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The first method tried for determining the vectors 
between the parallel images was to compute the self- 
convolution of the m i n i m u m  function - the Patterson 
function of the min imum function so to speak. It was 
expected that this would strongly show the vectors 
between the parallel images and that, if these could be 
recognized, it should be simple to deduce the displace- 
ments of which they were the vector set. 

To test this idea, structure factors were computed 
for the structure shown in Fig. 1 taking the atoms to 
be equal and with scattering factors given by the For- 
syth & Wells (1959) constants for chlorine. 

The corresponding Patterson function is shown in 
Fig.2 and the peak chosen for the minimum-funct ion  
overlap is indicated. The min imum function from this 
overlap is shown in Fig. 3; the Fourier coefficients of 
this function were calculated by a sampling method 
and the squares of these used to compute the self- 
convolution of the m i n i m u m  function (Fig.4). From 
the weight of  the peak X in Fig. 2 it seemed that there 
should be three parallel images of the structure in 
Fig.3 but it was not possible to interpret anything in 
Fig.4 as due to a vector set of  three points. It seemed 
that the lack of resolution of Fig.4 was due to the 
presence of a large number  of vectors other than those 
due to complete displacements of  the structure. 
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Fig. 1. (a) A point non-centrosymmetric structure. (b) One 
asymmetric unit of the Patterson function. The symbols for 
double and treble peaks are indicated. Other peaks are 
single. (c) The superposition function on the single peak 
shown in (b). (d) The superposition on the threefold peak 
shown in (b). Three parallel images are shown and inverted 
images are also present. 

A modified procedure 

In an ideal situation there will be a number,  M, of 
parallel images of the structure in the m i n i m u m  func- 
tion. However the images will appear with some distor- 
tion of the relative weights of the atoms. In what fol- 
lows we shall assume that the m i n i m u m  function shows 
several ' true'  images of the structure and accept the 
fact that deviations from this idealized situation will 
affect the strength of the conclusions which we draw. 

We first take the case of a centrosymmetric structure. 
The min imum function will show M parallel images 
whose centres of symmetry can be taken to be at + R1, 

Fig.2. A computed Patterson function for the structure shown 
in Fig. l(a). 
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Fig. 3. The minimum function from overlap on the peak X 
in Fig. 2. 

Fig.4. The self-convolution of the minimum-function map 
shown in Fig. 3. Inter-image vectors should occur at the 
positions P, Q and R. 
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_+ R2 • • • _ RM/2 and with weights proport ional  to W1, 
W2 . . .  WM/2. Let us assume that the 'a tom'  j of image 
m is of  such a form that its Fourier  transform for a 
part icular reciprocal space vector s is given by 

ej = Ks W,.j~ 

where K s is a constant for all atoms andj~ is the normal  
scattering factor for the atom j.  

The hth Fourier  coefficient of the min imum function 
is given by 

M N 

~h = Ks X X Wmf] c o s  2~zh. (rj + Rm) (1) 
, . ~ 1  j = l  

which, since the vectors R exist in pairs of the form 
+_ R, may be rewritten as 

½M N 

~h = 21(8 X Wm cos 27~h. Rm Z" j~ cos 2rch. rj (2) 
" = 1  j = l  

o r  
½M 

~h = 2KsF h E Wm cos 2~zh. Rm • (3) 
m = l  

Hence 
½M 

~'h = 2 X Wm cos 2~h.  Rm (4) 
(~h-- KsFh m = l  

and ~0 h is seen to be the hth Fourier  coefficient of a set 
of  points of  weights Wm at + Rm. 

Since the sign of F h is unknown so is the sign of tp h 
so that we cannot  determine the set of  points R by 
means of a Fourier  synthesis. However, in general M 
is a small  number  and a Fourier  synthesis with co- 
efficients ~02, which will show the vector set of the 
points R, should not be too difficult to interpret. 

The situation is somewhat  different for a non-centro- 
symmetric structure. With  the structure related to some 
point, P, as origin the real and imaginary parts of  the 
structure factor of  index h are given by 

N 

Ah= Z" j~ COS 2~zh. rj 
j = l  

N 

B h= Z" ~ sin 2~zh. r j .  
j = l  

The m i n i m u m  function will show ½M images of the 
structure whose representative points, P, are displaced 
by R1 . . .  RM/2 from the centre of symmetry of the 
map and another  ½M images produced by inversion 
through the centre of symmetry.  

The Fourier  coefficient of  index h for this map will 
be given by 

½M N 

~h=2Ks  ~ ~" W m f l c o s 2 ~ z h . ( r j + R m ) ,  (5) 
, . = 1  j - - I  

which yields on expansion 

~h = 2 Ku A cos 2rth. Rm-B h X Wm sin 2rth. Rm 
, . = |  

½M 

- -2K,  IFhl Z Wm cos (2~zh. Rm+~h) ,  (6) 
m = l  

where ct h is the phase of F h referred to an origin at P. 

Squaring both sides of this equation we find 

i-M ½m 
~u2 . . . . .  2 X ~r WmWncos[2~zh.(Rra+Rn) 

~°2 = -K 2 lFhl 2 ,.=1 ,=1 
½M ½M 

+ 2 ~ h ] + 2  _r 27 W m W n c o s 2 ~ z h . ( R m - R n ) .  (7) 
, . = 1  n = l  

It is clear that a Fourier  summat ion whose hth 
Fourier coefficient equals ~02 will give strong peaks at 
points such as R m - R n .  There will also be a general 
background due to the first term on the right hand side 
of (7), so that only hal f  the total weight of the peaks 
is concentrated in the peaks we wish to know. The 
map for the non-centrosymmetric  case should there- 
fore be more difficult to interpret in terms of being a 
vector set of the displacements R. However, as we 
shall see, such an interpretation was possible in the 
case of a model structure. 

Testing the modified procedure 

The values of ~'h had been computed from the m i n i m u m  
function of the model structure and the values of ~02, 
as given in equation (7), could be found. To do this it 
was not necessary to know in advance the function K,. 
It was sufficient to mult iply the values of ~'2/]Fhl2 by 
an empirically determined function of s, which re- 
moved any systematic fall-off with increasing s. How- 
ever some care is needed at this stage particularly if 
the value of IF[ is low. For one thing the experimental 
errors in measuring F will be proportionately higher 
for a small IFI, but more important  than this is the 
effect on the value of ~h of deviations from the idealized 
situation postulated in the previous section. 

We can see from equation (7) that the max imum 
possible value of the right hand side is 

~0~ax= w, .  (8) 
1 

It follows then that the m a x i m u m  value of ~'h should 
be such that tph does not exceed ~0max and hence if IFhl 
is small the value of gh should be correspondingly 
small. In such a case deviations of ~'h from the ideal- 
ized value can lead to very distorted values of Oh. It 
was concluded that the way to remove the worst effects 
of  this situation was to exclude any terms from the 
synthesis for which [Fhl was below some limit;  in this 
particular case the criterion for exclusion was 

IFhl2_< 0"01 r ] . (9) 

Unfortunately the exclusion of small values of IFhl 
does not exclude only small values of ~0 h but, since M 
is always a small number  and the number  of data is 
comparatively large, the partial Fourier  summat ion  
should show the peaks of the vector set reasonably well. 

The summat ion is shown in Fig.5. The indicated 
vectors were interpreted as due to the set of points A, 
B, C. It should be noted that the interpretation in this 
case corresponded to a non-centrosymmetric  set of  

A C 2 1  - 1" 
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points; if we had been dealing with a centrosymmetric 
structure the set would have to be centrosymmetric. 

A multiple superposition of the map shown in Fig. 3 
on the points A, B and C was computed and the mini- 
mum function (Fig. 6) showed the structure quite clearly 
although with some spurious peaks. 

Possible extensions of the method 

An obvious step in a method of this type is to work 
with three-dimensional data. The greater resolution of 
the Patterson function would give much higher dis- 
crimination in the overlap functions. It has been found 
that the quality of the Patterson function or, what 
amounts to the same thing, of the observed data, se- 
verely affects the efficiency of the process. This is pre- 
sumably due to the loss of small peaks by the super- 
position of the random errors of the poor data, and 
once a peak is lost the minimum function process can 
do nothing to restore it. An attempt can be made to 
remedy some of the loss at the last stage of the process, 
when a multiple superposition is made, by taking the 
second smallest value of the overlapped functions in- 
stead of the minimum. 

In practice, whatever one does, the final map will 
not be a perfect representation of the structure. The 
relative heights of the atom images will be awry and 
indeed some of the atoms may disappear altogether. 
False peaks will also appear and, indeed, it may be 
impossible to fit a model to the resultant map with any 
degree of confidence. However, in the centrosymmetric 
case, such a map may still be useful for sign determina- 
tion if the 'signal to noise' ratio is sufficiently high. 
The Fourier coefficients (~'s) of the map would tend 
to give an indication of sign for the F's and the pro- 
bability of having a correct sign would be expected 
to vary with F x  ~ (Woolfson, 1956). In fact the weight- 
ing scheme proposed by Woolfson could well be used 
to compute a trial Fourier synthesis and this would 
probably be the best one could do in the circum- 
stances. 

L% o 
Fig. 5. The modified convolution function. The vectors shown 

are due to the set of points A, B, C. 
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Fig.6. The final superposition map. 
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